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1 Overview

1.1 Scope

This standard specifies the storage format and mathematical behavior of posit™ numbers, including basic
arithmetic operations and the set of functions a posit system must support. It describes how results are to
be rounded to a real posit or determined to be a non-real exception.

1.2 Purpose

This standard provides a system for computing with real numbers represented in a computer using fixed-size
binary values. Deviations from mathematical behavior (including loss of accuracy) are kept to a minimum
while preserving the ability to represent a wide dynamic range. All features are accessible by programming
languages; the source program and input data suffice to specify the output exactly on any computer system.

1.3 Inclusions and Exclusions

This standard specifies:

• Binary formats for posits, for computation and data interchange

• Addition, subtraction, multiplication, division, dot product, comparison, and other operations

• Composite (fused) functions that are computed exactly, then rounded to posit format

• Mathematical elementary functions such as logarithm, exponential, and trigonometric functions

• Conversions of other number representations to and from posit formats

• Conversions between different posit formats

• Function behavior when an input or output value is not a real number (NaR)

Excluded from the standard are the specific names of the values and operations described here. The lower
camelCase naming style is used here, but naming style is excluded from this standard. Languages may use
alternative names and symbols for values and operations that match the behavior described here.1

Also excluded are rules for how a language should handle and report errors. If a program attempts a
posit computation outside the domain that produces a real-valued output, or compares a NaR with a real
number, behavior beyond the arithmetic result specified here is up to the standard for that language.

1.4 Requirements vs. Recommendations

All descriptions herein are requirements of system behavior, not recommendations. The decision of how to
satisfy the requirements and which precisions to support is up to the implementer of this standard, but all
functionality must be provided and behave as described for a system to be posit-compliant.

1For example, the arc hyperbolic cosine is here shown as arcCosH, but it may be called acosh in the math library for C
so long as it meets this standard’s requirement of correct rounding for all inputs. Similarly, a language may express a sum of
two posits a and b as a+ b, though that function is here called addition(a, b). Rounding behavior must follow the rules in this
document for a language to be posit-compliant.
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2 Definitions, abbreviations, and acronyms

2.1 Definitions

exception Corner cases in the interpretation of the posit format: 0 and NaR. Posit exceptions do not imply
a need to check status flags or handle heavyweight OS or language runtime exceptions.

exponent The power-of-two scaling determined by the exponent bits, in the set {0, 1, 2, 3}.

exponent bits A two-bit unsigned integer field that determines the exponent.

format A set of bit fields and the definition of their meaning.

fraction The binary digits after the binary point; 0 ≤ fraction < 1.

fused Rounded only after an exact evaluation of an expression involving more than one operation.

implicit value A value added to the fraction based on the sign: −2 for negative posits, 1 for positive posits.
Zero and NaR do not have an implicit value.

lg The logarithm base 2.

LSB The least significant bit of a format or a bit field within a format.

maxPos The largest positive value expressible as a posit.

minPos The smallest positive value expressible as a posit.

MSB The most significant bit of a format or a bit field within a format.

NaR Not a real. A value that is not mathematically definable as a unique real number.

n The number of bits in a posit format. It can be any positive integer 2 or greater.

pIntMax The largest consecutive integer expressible as a posit.

posit A real number representable using the format described in this standard, or NaR.

precision The total storage size for expressing any number format, in bits. For a posit, precision is n bits.

quire A fixed-point format capable of storing exact sums and differences of products of posits.

regime A posit subfield adjacent to the MSB consisting of a run of 0 bits terminated by a 1 bit, or a run
of 1 bits terminated by a 0 bit, or all identical bits terminating at the LSB.

rounded Converted from a real number to a posit value, according to the rules of this standard.

sign The value 1 for positive numbers, −1 for negative numbers, and 0 for 0. NaR has no sign.

sign bit The MSB of a posit or quire bit field.

significand The implicit value plus the fraction; −2 ≤ significand < −1 for negative posits, and
1 ≤ significand < 2 for positive posits.
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3 Posit and quire formats

3.1 Overview

3.1.1 Formats

This section defines posit formats, which are used to represent a finite set of real numbers. Posit formats are
specified by their precision, n. For each posit precision, there is also a quire format of precision 16n that is
used to contain exact sums of products of posits. Dynamic range, quire size, and accuracy are determined
solely by n. This standard describes example choices for n like 8, 16, and 32. The posit type label is “posit”
with the decimal string for n appended. The corresponding quire type label is “quire” with the decimal
string for n appended, even though its format has 16n bits. For example, n = 3 types are posit3 and quire3,
n = 64 types are posit64 and quire64, etc.

3.1.2 Compliance

An implementation is compliant with this standard if it supports full functionality of at least one precision.
If the implementation supports more than one precision, then it must support conversions between them.

3.1.3 Represented data

Within each format, a posit represents NaR or a real number x of the form k × 2m, where k and m are
integers limited to a range symmetrical about and including zero. The smallest positive posit, minPos, is
2−4n+8 and the largest positive posit, maxPos, is 1/minPos, or 24n−8. Every posit is an integer multiple of
minPos. Every real number maps to a unique posit representation; there are no redundant representations.

The quire represents either NaR or an integer multiple of the square of minPos, represented as a 2’s
complement binary number with 16n bits. This enables it to add or subtract products of two posits up
to at least 231 − 1 times without rounding or overflow.2 The quire sum limit is the minimum number
of add or subtract operations that can overflow the quire. Posits can express all integers i in a range
−pIntMax ≤ i ≤ pIntMax. Outside that range, integers exist that cannot be expressed as a posit without
rounding to a different integer; pIntMax is d2b4(n+2)/5c−4e. The properties of example and general posit
precisions are summarized in Table 1:

Property posit8 posit16 posit32 positn
fraction length 0 to 3 bits 0 to 11 bits 0 to 27 bits 0 to max(0, n− 5) bits
minPos value 2−24 ≈ 6.0× 10−8 2−56 ≈ 1.4× 10−17 2−120 ≈ 7.5× 10−37 2−4n+8

maxPos value 224 ≈ 1.7× 107 256 ≈ 7.2× 1016 2120 ≈ 1.3× 1036 24n−8

pIntMax 16 1024 8388608 d2b4(n+2)/5c−4e
quire precision 128 bits 256 bits 512 bits 16n bits
quire sum limit 255 ≈ 3.6× 1016 287 ≈ 1.5× 1026 2151 ≈ 2.9× 1045 223+4n

Table 1: Properties of posit formats

3.2 Binary interchange format encoding

3.2.1 Posit format encoding

Posits are encoded in the binary interchange format shown in Figures 1 and 2. Figure 1. defines the general
format, while Figure 2. shows the extreme case where posits are their smallest or largest. The four fields are:

1. Sign bit S.

2. Regime R consisting of r bits identical to R0, terminated either by 1− R0 (r + 1 bits total length) as
shown in Figure 1, or by the LSB of the posit (r bits total length) as shown in Figure 2.

2The product of two posits in precision n is always exactly expressible in a posit of precision 2n, but the quire obviates such
temporary doubling of precision when computing sums and differences of products.
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S (sign) R (regime) E (exponent) F (fraction)

1 bit MSB LSBr + 1 bits

R0 . . . . . .Rr

2 bits

E0 E1

MSB LSBf bits

F0 . . . . . .Ff−1

Figure 1: General binary posit format

S (sign) R (regime)

1 bit MSB LSBr bits

R0 . . . . . .Rr−1

Figure 2: Binary posit format with exponent and fraction fields truncated

3. Exponent E represented by 2 exponent bits; truncated bits have value 0.

4. Fraction F represented by f fraction bits; truncated bits have value 0.

The meaning of each field is as follows:

1. S is its literal value, 0 or 1. The implicit value is (1− 3S).

2. R is −r if R0 is 0, and r − 1 if R0 is 1.

3. E is a 2-bit unsigned integer. 0 ≤ E ≤ 3.

4. F represents an f -bit unsigned integer divided by 2f . 0 ≤ F < 1.

The value x of the datum represented is inferred from the fields S, R, E, F as follows:

1. If S = 0 and R = 1− n (all other fields contain only 0 bits), then x = 0.

2. If S = 1 and R = 1− n (all other fields contain only 0 bits), then x is NaR.

3. Otherwise, x = k × 2m = ((1− 3S) + F )× 2(1−2S)×(4R+E+S).

3.2.2 Quire format encoding

A quire is a fixed-point 2’s complement value of length 16n, with fields as follows:

S (sign) C (carry guard) I (integer) F (fraction)

1 bit MSB LSB31 bits

C0 . . . . . .C30

MSB LSB8n− 16 bits

I0 . . . . . . I8n−17

MSB LSB8n− 16 bits

F0 . . . . . .F8n−17

Figure 3: Binary quire format

The representation (S,C, I, F ) of a quire and value q of the datum represented are inferred from the fields
as follows:

1. If S = 1 and all other fields contain only 0 bits, then q is NaR.

2. Otherwise q is 216−8n times the 2’s complement signed integer represented by all bits concatenated.
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4 Rounding

4.1 Definition and Method

Rounding is the substitution of a posit for any real number. Operation results are regarded as exact prior to
rounding. The method for rounding a real value x is described by the following algorithm:

Data: x, a real number
Result: Rounded x
if x is exactly expressible as a posit then

return x
else if |x| > maxPos then

return sign(x)×maxPos
else if |x| < minPos then

return sign(x)×minPos
else

Let u and w be n-bit posits such that u < x < w and open interval (u,w) contains no n-bit posit.
Let U be the n-bit string associated with u.
Let v be the (n+ 1)-bit posit associated with the (n+ 1)-bit string U1.
if u < x < v or (LSB of U is 0 and x = v) then

return u
else

return w
end

end

4.2 Fused Expressions

A fused expression is an expression with two or more operations that is evaluated exactly before rounding
to a posit. Fused expressions must be distinct from non-fused expressions in source code. Expressions that
can be written in the form of a dot product of vectors of length less than 231 can be evaluated exactly in
the quire and then rounded to posit format to create a fused expression.3 Fused expressions (such as fused
multiply-add and fused multiply-subtract) need not be performed with the quire to be compliant.

4.3 Program Execution Restrictions

The execution order of operations cannot be changed from that expressed in the source code if it affects round-
ing. This includes any use of precisions or operation fusing not expressed in the source code. Optimizations
produced with automatic tools must be expressed as source code and not executed directly.

If a language permits mixed data types in expressions, including quires and posits, or posits and other
formats for representing real numbers, the language must specify how such expressions are evaluated and
evaluation must be implementation-independent.

3 If a fused expression is computed in parallel, sufficient intermediate result information must be communicated that the
result is identical to the single-processor result. Note that functions in Section 5 which are rounded and have two or more
operations in their mathematical definition are fused expressions, such as rSqrt, expMinus1, and hypot.
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5 Operations

5.1 Guiding principles for NaR

If an operation produces real-valued output, any NaR input produces NaR output, with the exception of
next and prior. NaR is output when the mathematical result of a function is not a unique real number as
a continuous function of the inputs within the function domain, except for functions in Section 5.2.1. A test
of NaR equal to NaR returns True. NaR has no sign, so sign(NaR) returns NaR.

5.2 Mathematical functions

The following functions shall be supported, with rounding per Section 4. Functions that take more than one
posit input must have the same precision for all inputs, and any posit output is in the same precision as the
inputs. Conversion routines may used to make mixed-precision inputs the same precision, per Section 6.1.
Conversions may be explicit in source code or implicit by language rules.

5.2.1 Simple functions of one posit argument

negate(posit) returns −posit.4
abs(posit) returns negate(posit) if posit< 0, else posit.
sign(posit) returns the posit representing 1 if posit > 0, −1 if posit < 0, or 0 if posit = 0.
round(posit) returns the integer-valued posit nearest to posit, and the nearest even integer-valued
posit if two integers are equally near.
ceil(posit) returns the smallest integer-valued posit greater than or equal to posit.
floor(posit) returns the largest integer-valued posit less than or equal to posit.
next(posit) returns the posit represented by an increment of the posit bit string.5

prior(posit) returns the posit represented by a decrement of the posit bit string.6

5.2.2 Arithmetic functions of two posit arguments

addition(posit1, posit2) returns posit1 + posit2, rounded.
subtraction(posit1, posit2) returns posit1− posit2, rounded.
multiplication(posit1, posit2) returns posit1× posit2, rounded.
division(posit1, posit2) returns posit1/posit2, rounded.

5.2.3 Comparison functions of two posit arguments

All comparison functions return Boolean values identical to comparisons of the posit bit strings regarded as
2’s complement integers, so there is no need for separate machine-level instructions. The value NaR has the
bit string of the most negative integer, so compareLess(NaR, posit) returns True if posit is real.

compareEqual(posit1, posit2 )
compareNotEqual(posit1, posit2 )
compareGreater(posit1, posit2 )
compareGreaterEqual(posit1, posit2 )
compareLess(posit1, posit2 )
compareLessEqual(posit1, posit2 )

5.2.4 Elementary functions of one posit argument

sqrt(posit) returns
√
posit, rounded.

rSqrt(posit) returns 1/
√
posit, rounded.

exp(posit) returns eposit, rounded.

4This is the 2’s complement of the posit bit string. 2’s complement does not affect 0 or NaR, since they are unsigned.
5This means that next(maxPos) is NaR, and next(NaR) is −maxPos. 2’s complement integer overflow is ignored.
6This means that prior(−maxPos) is NaR, and prior(NaR) is maxPos. 2’s complement integer underflow is ignored.
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expMinus1(posit) returns eposit − 1, rounded.
exp2(posit) returns 2posit, rounded.
exp2Minus1(posit) returns 2posit − 1, rounded.
exp10(posit) returns 10posit, rounded.
exp10Minus1(posit) returns 10posit − 1, rounded.
log(posit) returns loge(posit), rounded.
logPlus1(posit) returns loge(posit + 1), rounded.
log2(posit) returns log2(posit), rounded.
log2Plus1(posit) returns log2(posit + 1), rounded.
log10(posit) returns log10(posit), rounded.
log10Plus1(posit) returns log10(posit + 1), rounded.
sin(posit) returns sin(posit), rounded.
sinPi(posit) returns sin(π × posit), rounded.
cos(posit) returns cos(posit), rounded.
cosPi(posit) returns cos(π × posit), rounded.
tan(posit) returns tan(posit), rounded.
tanPi(posit) returns tan(π × posit), rounded.
arcSin(posit) returns arcsin(posit), rounded.
arcSinPi(posit) returns arcSin(posit) / π, rounded.
arcCos(posit) returns arccos(posit), rounded.
arcCosPi(posit) returns arccos(posit) / π, rounded.
arcTan(posit) returns arctan(posit), rounded.
arcTanPi(posit) returns arctan(posit) / π, rounded.
sinH(posit) returns (eposit − e−posit)/2, rounded.
cosH(posit) returns (eposit + e−posit)/2, rounded.
tanH(posit) returns (eposit − e−posit)/(eposit + e−posit), rounded.
arcSinH(posit) returns arcsinh(posit), rounded.
arcCosH(posit) returns arccosh(posit), rounded.
arcTanH(posit) returns arctanh(posit), rounded.

5.2.5 Functions of two posit arguments

hypot(posit1, posit2) returns
√
posit12 + posit22, rounded.

pow(posit1, posit2) returns posit1posit2, rounded.7

arcTan2(posit1, posit2) returns the argument t of posit1+ i posit2, −π < t ≤ π, rounded8

arcTan2Pi(posit1, posit2) returns arcTan2(posit1, posit2)/π, rounded

5.2.6 Functions of three posit arguments

fMM(posit1, posit2, posit3) returns posit1× posit2× posit3, rounded.9

5.2.7 Functions of a posit argument and an integer argument

compound(posit, integer) returns (1 + posit)integer, rounded.
rootN(posit, integer) returns posit1/integer, rounded.

5.3 Functions not yet required for compliance

Special functions such as error functions, Bessel functions, gamma and digamma functions, beta and zeta
functions, etc. are not presently required for a system to be posit compliant. They may be required in a
future revision of this standard.

7See Section 5.1 for situations that generate NaR. For example, xy is not continuous at x = y = 0, so pow(0, 0) is NaR.
8The discontinuity in arcTan2(x, y) for x ≤ 0, y = 0 is an exception to section 5.1 and should return π if x < 0, 0 if x = 0.
9Because multiplication is commutative and associative, any permutation of the inputs will return the same rounded result.
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5.4 Functions that do not round correctly for all arguments

Computing environments that support versions of functions in Section 5.2 that do not round correctly for
all inputs must supply the source code for such functions, and use a name for them that is distinct from the
name of the function that rounds correctly for all inputs.

5.5 Functions involving quire arguments

With the exception of qToP which returns a posit format result, a quire function returns a quire format
result.10 If any quire operation overflows the carry bits of a quire, the result is NaR in quire format.

pToQ(posit) returns posit converted to quire format.
qNegate(quire) returns −quire.
qAbs(quire) returns qNegate(quire) if quire < 0, else quire.
qAddP(quire, posit) returns quire + posit.
qSubP(quire, posit) returns quire− posit.
qAddQ(quire1, quire2) returns quire1 + quire2.
qSubQ(quire1, quire2) returns quire1− quire2.
qMulAdd(quire, posit1, posit2) returns quire + (posit1× posit2).
qMulSub(quire, posit1, posit2) returns quire− (posit1× posit2).

qToP(quire) returns quire rounded to posit format per Section 4.1.

Other functions of the quire may be provided through software in the source code, but are not required for
compliance. They may be required in a future revision of this standard.

10 These quire functions can be used to compute the real and imaginary parts of complex number products, sums up to length
223+4n, dot products and scaled sums of vectors up to length 231−1, determinants of 2-by-2 matrices, discriminants of quadratic
equations, residuals of solutions to systems of linear equations, and higher-precision arithmetic for addition, subtraction, multi-
plication, division, and square root of values expressed as un-evaluated sums of posit value lists. The posit obtained by rounding
a quire can be subtracted from that quire and the quire again converted to a second posit, and that process repeated to produce
tuples representing higher precision.
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6 Conversion operations for posit format

6.1 Conversion between different precisions

Converting a posit to higher precision is exact, by appending 0 bits. Conversion to a lower precision is
rounded, per Section 4. In the function notation used here,

pmTon(posit) returns the n-bit posit form of an m-bit posit posit by these conversion rules.

6.2 Quire conversion

A posit compliant system needs only to support rounding from quire to posit and conversion of posit to quire
in the matching posit precision, per Section 5.5.

6.3 Conversion between posit format and decimal character strings

Table 2 shows examples of the minimum number of significant decimals needed to express a posit such that
the real number represented by the decimal form will round to the same posit.

Precision posit8 posit16 posit32 posit64
Decimals 2 5 10 21

Table 2: Examples of minimum decimals in a base-ten significand to preserve posit value

6.4 Conversion between posit format and integer format

Supported posit sizes must provide conversion to and from all integer sizes supported in a computing envi-
ronment. In converting a posit to an integer, if the posit is out of integer range after rounding or is NaR, the
integer is returned that has its MSB = 1 and all other bits 0. In converting an integer to a posit, the integer
with its MSB = 1 and all other bits 0 converts to NaR; otherwise, the integer is rounded, per Section 4.

6.5 Conversion between posit format and IEEE 754™ Standard float format

Supported posit sizes must provide conversion to and from all IEEE 754 Standard float formats supported in
a computing environment, if any. In converting a posit to an IEEE 754 float of any type, posit zero converts
to the “positive zero” float, and NaR converts to quiet NaN. Otherwise, the posit value is converted to a float
per the float rounding mode in use. In converting a float to a posit, all forms of infinity and NaN convert
to NaR. Otherwise, the real number represented by the float is rounded, per Section 4. The “negative zero”
and “positive zero” floats convert to posit zero. �
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